Year	FS- 'Maths moments video'	Year 1- 'Maths Moments video'	Year 2- 'Maths Moments video'	Year 3- 'Maths Moments video'
	Count and order numbers to 20. Count out objects from a larger group. Add single digit numbers by counting all. Add single digit numbers by counting on. Number bonds: 2, 3, 4. Doubles up to 5 . Use vocabulary such as 'more' and 'fewer' to compare sets. Give one more mentally. Use vocabulary of addition to talk about practical activities/problems.	Number bonds: 5, 6, 7, 8, 9, 10, 11. Add 10. Doubles up to 10 . Largest number first. 1 more. Add one-digit and two-digit numbers to 20 , including zero Solve one-step problems that involve addition, using concrete objects and pictorial representations, and missing number problems such as $7=\square-$ 9	Number bonds: 20, 12, 13, 14,15, 16, 17, 18, 19. Recall and use addition facts to 20 fluently, and derive and use related facts up to 100 Add 1 digit to 2 digits by bridging. Partition second number, add tens then ones and recombine. Add 10 and multiples of 10. Doubles up to 20 and multiples of 5. Add near multiples of 10 . Add and subtract numbers using concrete objects, pictorial representations, and mentally, including.	Add numbers 1 and 2 digit numbers to 3 digit numbers. Add multiples of 10, 100. Add single digit bridging through boundaries. Partition second number to add and recombine. Use near doubles to add. Add near multiples of 10 and 100 by rounding and adjusting.
			Counting in fractions up to 10 , starting from any numbers and using the $1 / 2$ and $2 / 4$ equivalence on the number line	Addition of fractions with the same denominator within one whole. $\frac{2}{5}+\frac{3}{5}=\frac{5}{5}$
	Mark making to represent numberscorrect formation of numbers to 10. Pictorial representations of problems.	Read, write and interpret mathematical statements involving addition (+), and equals (=) signs	Add two two-digit numbers using concrete objects, pictorial representations progressing to formal written methods. $\begin{array}{lr} 40+9 \\ +\underline{20+3} \\ \hline 60+12=72 \end{array} \quad+\underline{49} 9$	$\begin{array}{\|lr} \hline \begin{array}{l} \text { Add numbers with up to } \\ \text { three digits, using formal } \end{array} & +\frac{88}{511} \\ \begin{array}{l} \text { written methods of } \\ \text { columnar addition with } \\ \text { regrouping to carry } \end{array} & \\ & \\ \hline \end{array}$

Calculation Policy- Addition

Number track / Number line -
jumps of 1 then efficient jumps
using number bonds
$18+5=2300000000000000-00000$
$46+27=73$ Count in tens then bridge.

$25+29$ by +30 then -1
(Round and adjust)
Count on: 8+5=13

$$
=13
$$

Count on, on number track, in 1s
$8+5=13$

Use Numicon to represent addition:

Bar Model:

Number line: $264+158$ efficient jumps

$400+800=$
using $4+8=12$
$40+80=120$
So $400+800=1200$
$243+198$
by +200 then -2 (Round and adjust)

Pairs that make 100
$23+77$
—————n Bead string

Diennes 100s, 10s, 1s
$113+76$

(Also with £, 10p and 1p) Bar model

Year	Year 3- 'Maths Moments video'	Year 4- 'Maths Moments video'	Year 5- 'Maths Moments video'	Year 6- 'Maths Moments video'
Mental Calculations Mental methods	Add numbers 1 and 2 digit numbers to 3 digit numbers. Add multiples of 10, 100. Add single digit bridging through boundaries. Partition second number to add and recombine. Use near doubles to add. Add near multiples of 10 and 100 by rounding and adjusting.	Continue to add numbers mentally. Add multiples of 10s, $100 \mathrm{~s}, 1000 \mathrm{~s}$. Fluency of 2 digit + 2 digit. Partition second number to add then recombine. Decimal pairs of 10 and 1. Use near doubles to add. Add near multiples. Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.	Add multiples of $10 \mathrm{~s}, 100 \mathrm{~s}$, 1000s, tenths. Fluency of 2 digit + 2 digit including with decimals. Partition second number to add then recombine. Use number facts, bridging and place value. Adjust numbers to add. Add and subtract numbers mentally with increasingly large numbers	Perform mental calculations, including with mixed operations and large numbers Add multiples of $10 \mathrm{~s}, 100 \mathrm{~s}, 1000 \mathrm{~s}$, tenths, hundredths. Fluency of 2 digit +2 digit including with decimals. Partition second number to add then recombine. Use number facts, bridging and place value. Adjust numbers to add.
	Addition of fractions with the same denominator within one whole. $\frac{2}{5}+\frac{3}{5}=\frac{5}{5}$	Addition of fractions with the same denominator within one whole. $\frac{2}{5}+\frac{3}{5}=\frac{5}{5}$	Add fractions with the same denominator and denominators that are multiples of the same number. $\frac{1}{2}+\frac{3}{4}=\frac{2}{4}+\frac{3}{4}=\frac{5}{4}$ Recognise mixed number fractions and improper fractions and convert from one to the other and write mathematical statements e.g. $2 / 5+4 / 5=6 / 5=11 / 5$	Add fractions with different denominators and mixed numbers, using the concept of equivalent fractions. Start with fractions where the denominator of one fraction is a multiple of the other (e.g. $1 / 2+1 / 8$ $=5 / 8$) and progress to varied and increasingly complex problems Practice calculations with simple fractions and decimal equivalents to aid fluency
	Add numbers with up 423 to three digits, using $+\frac{88}{511}$ formal written methods of columnar addition with regrouping to carry.	 Add numbers with up 2458 to 4 digits using the $+\frac{596}{3054}$ formal written methods of columnar addition where appropriate.	 Add whole numbers with more than 4 23454 digits, including using +24050 formal written methods (columnar addition).	Solve addition multi-step problems in contexts, deciding which operations and methods to use and why

Calculation Policy- Addition

